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If no. of voters is odd (say, 2k+1) If no. of voters is even (say, 2k)

All candidates between
top(v,) is a Condorcet winner top(v,) and top(v.+)

are weak Condorcet winners
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For this, let us discuss an equivalent definition
of single-peaked preferences.
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Then, for any x <y <z, a voter v will never rank y below x and z.
("no valleys" property)

if top(v) is to the left of y If top(v) is to the right of y

then y is preferred over z/ then vy is preferred over x

X y z

Thus, single peaked (w.r.t. <) = no valleys (w.r.t. <).
Let us now show that no valleys (w.r.t. <) = contiguous segments (w.r.t. <).
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[Booth and Leuker, JCSS 1976]
The consecutive 1's problem can be solved in polynomial time.
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Do single-peaked preferences occur in real world?



& https://www.preflib.org/

PrefLib: A Library for Preferences

Data * Elections Matchings Ratings Search

PrefLib

PrefLib is a reference library of preference data and links assembled by Vicho \darter, 1 Walsh and
lately 5 . This site and library is proudly supported by the A/gorithmic De: 1 Theor) poat
Darad ] and the The COMSOC Group at the | ersity of Amsterda

We want to provide a comprehensive resource for the multiple research communities that deal with
preferences, including computational social choice, recommender systems, data mining, machine learning,
and combinatorial optimization, to name just a few.

For more information on PrefLib and some helpful tips on using it. please see Nick's Tutorial
Cade from EXPLORE 2014. Check out the a pe page to learn more about the kind of data we provide.

Please see the ' page for information about the site, contacting us, and our citation policy. We rely on
the support of the community in order to grow the usefulness of this site. To contribute, please contact
at: nsmattelat} gmail or 5im at: s.).rey{atjuvajdot}nl

In Brief

We currently host:

s 11 types of data
e 15 datasets
o 3668 data files

» More than 3.37 Gb, of data

Other Links

Here are some links that you might find relevant
as well.

o DEMOCRATIN: A Declarative Approach
to Winner Determination




CHAPTER 15

A PREFLIB.ORG Retrospective: Trends in Computational
Lessons Learned and New Directions Social Choice

Nicholas Mattei and Toby Walsh

Realism. Perhaps the key motivating factor behind assembling PREFLIB was a
desire to have realistic data. Many of the models studied in classical social
choice seem to be chosen because they seem reasonable or were explic-
itly chosen for mathematical expediency. Perhaps nothing is more of an
exemplar here than the fact that out of over 300 profiles containing strict,
complete pretference relations, absolutely none are single-peaked, a common
profile restriction that has been called “natural” or “well-motivated” numer-
ous times since its introduction by Black (1948). Collecting data has helped
us to quantify what is reasonable. Now we have to start using the data.




Summarizing the Voting Landscape




Summarizing the Voting Landscape

.
Two candidates: Majority!

Three+ candidates:
Maijority relation can be cyclic
Many voting rules, many applications!

e




Summarizing the Voting Landscape

™ 4
Two candidates: Majority! @

Three+ candidates: Any "reasonable" voting rule is
Majority relation can be cyclic either manipulable or a dictatorship.
Many voting rules, many applications!

- ) i vy




Summarizing the Voting Landscape

™ 4
Two candidates: Majority! @

Three+ candidates: Any "reasonable" voting rule is
Majority relation can be cyclic either manipulable or a dictatorship.
Many voting rules, many applications!

- ) i vy

f ©

Computational complexity can
sometimes prevent manipulation.

(and a bit about sports) |
y




Summarizing the Voting Landscape

™ -~
Two candidates: Majority!

Three+ candidates:
Maijority relation can be cyclic
Many voting rules, many applications!

e

O

Structured preferences can help
circumvent negative results.

©

Any "reasonable" voting rule is
either manipulable or a dictatorship.

A

©

Computational complexity can
sometimes prevent manipulation.

(and a bit about sports) |
A




Next Time

House allocation and kidney exchange




Reminder: Project groups due today!
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